On the Newton partially flat minimal resistance body type problems
Author(s) -
Myriam Comte,
Jesús Ildefonso Díaz Díaz
Publication year - 2005
Publication title -
journal of the european mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.549
H-Index - 64
eISSN - 1435-9863
pISSN - 1435-9855
DOI - 10.4171/jems/33
Subject(s) - mathematics , bounded function , uniqueness , mathematical analysis , stationary point , regular polygon , domain (mathematical analysis) , ball (mathematics) , constraint (computer aided design) , type (biology) , constant (computer programming) , pure mathematics , geometry , ecology , biology , computer science , programming language
We study the flat region of stationary points of the functional integral(Omega) F(|del u(x)|) dx under the constraint u <= M, where Omega is a bounded domain in R-2. Here F( s) is a function which is concave for s small and convex for s large, and M > 0 is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when Omega is a ball. We also analyze some other qualitative properties. Moreover, we show the uniqueness of a radial solution minimizing the above mentioned functional. Finally, we consider nonsymmetric domains Omega and provide sufficient conditions which ensure that a stationary solution has a flat part.\u
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom