Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II
Author(s) -
Jean Bourgain,
Alex Gamburd
Publication year - 2009
Publication title -
journal of the european mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.549
H-Index - 64
eISSN - 1435-9863
pISSN - 1435-9855
DOI - 10.4171/jems/175
Subject(s) - mathematics , random walk , combinatorics , mathematical physics , statistics
We prove that Cayley graphs of SLd(Z/pnZ) are expanders with respect to the projection of any fixed elements in SL2(Z) generating a Zariski-dense subgroup
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom