Large data local solutions for the derivative NLS equation
Author(s) -
Ioan Bejenaru,
Daniel Tataru
Publication year - 2008
Publication title -
journal of the european mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.549
H-Index - 64
eISSN - 1435-9863
pISSN - 1435-9855
DOI - 10.4171/jems/136
Subject(s) - mathematics , derivative (finance) , nls , mathematical analysis , biochemistry , nuclear localization sequence , chemistry , cytoplasm , financial economics , economics
We consider the Derivative NLS equation with general quadraticnonlinearities. In \cite{be2} the first author has proved a sharp small datalocal well-posedness result in Sobolev spaces with a decay structure atinfinity in dimension $n = 2$. Here we prove a similar result for large initialdata in all dimensions $n \geq 2$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom