z-logo
open-access-imgOpen Access
A nonstandard free boundary problem arising in the shape optimization of thin torsion rods
Author(s) -
Jean Jacques Alibert,
Guy Bouchitté,
Ilaria Fragalà,
Ilaria Lucardesi
Publication year - 2013
Publication title -
interfaces and free boundaries mathematical analysis computation and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.964
H-Index - 39
eISSN - 1463-9971
pISSN - 1463-9963
DOI - 10.4171/ifb/296
Subject(s) - rod , torsion (gastropod) , geometry , mathematical analysis , mathematics , free boundary problem , boundary value problem , anatomy , medicine , pathology , alternative medicine
International audienceWe study a 2d-variational problem, in which the cost functional is an integral depending on the gradient through a convex but not strictly convex integrand, and the admissible functions have zero gradient on the complement of a given domain D. We are interested in establishing whether solutions exist whose gradient "avoids" the region of non-strict convexity. Actually, the answer to this question is related to establishing whether homogenization phenomena occur in optimal thin torsion rods. We provide some existence results for different geometries of D, and we study the nonstandard free boundary problem with a gradient obstacle, which is obtained through the optimality conditions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom