A simple recursion for power sum polynomials
Author(s) -
Helmut Länger
Publication year - 2014
Publication title -
elemente der mathematik
Language(s) - English
Resource type - Journals
eISSN - 1420-8962
pISSN - 0013-6018
DOI - 10.4171/em/249
Subject(s) - simple (philosophy) , recursion (computer science) , mathematics , double recursion , sums of powers , power (physics) , algebra over a field , calculus (dental) , pure mathematics , discrete mathematics , algorithm , physics , medicine , philosophy , dentistry , epistemology , quantum mechanics
There exists some literature on power sum polynomials and their connection to Bernoulli numbers and Bernoulli polynomials (cf., e.g., [1]–[5]). In this note we provide an elementary proof of a simple recursion for power sum polynomials. In the followingN (N0 resp.R) denote the set of all positive integers (non-negative integers resp. real numbers), let k ∈ N, n ∈ N0 and x ∈ R and put Pk(n) := n ∑
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom