Avoiding arithmetic progressions in cyclic groups
Author(s) -
Lorenz Halbeısen,
Stephanie Halbeisen
Publication year - 2005
Publication title -
elemente der mathematik
Language(s) - English
Resource type - Journals
eISSN - 1420-8962
pISSN - 0013-6018
DOI - 10.4171/em/16
Subject(s) - arithmetic , mathematics , algebra over a field , pure mathematics
For given natural numbers n and r, α(n, r) denotes the maximum cardinality of a subset of Zn which does not contain any non-constant arithmetic progression (modulo n) of length r. The function α(n, r) is investigated for several values of n and r. In particular, it is shown that α(n, n) = n ( 1 − 1 p ) , where p is the smallest prime dividing n, and that for any prime number p we have α(p2, p) = (p− 1)2.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom