Formulas giving prime numbers under Cramér’s conjecture
Author(s) -
Bakir Farhi
Publication year - 2009
Publication title -
elemente der mathematik
Language(s) - English
Resource type - Journals
eISSN - 1420-8962
pISSN - 0013-6018
DOI - 10.4171/em/115
Subject(s) - conjecture , mathematics , prime (order theory) , combinatorics , twin prime , discrete mathematics
Under Cram\'er's conjecture concerning the prime numbers, we prove that forany $x>1$, there exists a real $A=A(x)>1$ for which the formula $[A^{n^x}]$(where $[]$ denotes the integer part) gives a prime number for any positiveinteger $n$. Under the same conjecture, we also prove that for any$\epsilon>0$, there exists a positive real number $B$ for which the formula$[B.{n!}^{2+\epsilon}]$ gives a prime number for any sufficiently largepositive integer $n$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom