z-logo
open-access-imgOpen Access
Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature
Author(s) -
Sonia Khier,
Laura Lohan
Publication year - 2018
Publication title -
future science oa
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.825
H-Index - 23
ISSN - 2056-5623
DOI - 10.4155/fsoa-2017-0140
Subject(s) - cell free fetal dna , dna , biomarker , computational biology , organism , cell , liquid biopsy , in vivo , biology , medicine , chemistry , biochemistry , cancer , microbiology and biotechnology , genetics , pregnancy , fetus , prenatal diagnosis
Circulating cell-free DNA is considered as one of the major breakthroughs in the field of innovative diagnosis, used as a liquid biopsy. The kinetic parameters of a biomarker are mandatory to assess its usefulness as a diagnostic tool. Obtaining precise mathematical values for the kinetic parameters (e.g., half-life) is then crucial because it could be used for therapeutic monitoring as a prognostic factor. However, little is known about the intrinsic properties of circulating cell-free DNA, more especially, its kinetic properties within the organism. We summarized the basic principles that may affect the kinetics of circulating cell-free DNA within the organism in the light of biological and clinical evidence. We also meta-analyzed the reported data in the literature and the methodologies that have been used to study the kinetic parameters of human circulating cell-free DNA in vivo .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom