Recent progress in the research of cold-inducible RNA-binding protein
Author(s) -
Peng Zhong,
He Huang
Publication year - 2017
Publication title -
future science oa
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.825
H-Index - 23
ISSN - 2056-5623
DOI - 10.4155/fsoa-2017-0077
Subject(s) - microbiology and biotechnology , rna binding protein , cytoplasm , biology , rna , heat shock protein , extracellular , cold shock domain , intracellular , stress granule , messenger rna , telomere , translation (biology) , genetics , gene
Cold-inducible RNA-binding protein (CIRP) is a cold-shock protein which can be induced after exposure to a moderate cold-shock in different species ranging from amphibians to humans. Expression of CIRP can also be regulated by hypoxia, UV radiation, glucose deprivation, heat stress and H 2 O 2 , suggesting that CIRP is a general stress-response protein. In response to stress, CIRP can migrate from the nucleus to the cytoplasm and regulate mRNA stability through its binding site on the 3′-UTR of its targeted mRNAs. Through the regulation of its targets, CIRP has been implicated in multiple cellular process such as cell proliferation, cell survival, circadian modulation, telomere maintenance and tumor formation and progression. In addition, CIRP can also exert its functions by directly interacting with intracellular signaling proteins. Moreover, CIRP can be secreted out of cells. Extracellular CIRP functions as a damage-associated molecular pattern to promote inflammatory responses and plays an important role in both acute and chronic inflammatory diseases. Here, we summarize novel findings of CIRP investigation and hope to provide insights into the role of CIRP in cell biology and diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom