z-logo
open-access-imgOpen Access
Effects of silica-rich water on systemic and peritoneal inflammation in rats exposed to chronic low-level (900-MHz) microwave radiation
Author(s) -
Boris Djindjić,
Tanja Džopalić,
Momir Dunjić,
Dejan Krstić,
Zoran Radovanović,
Jelena Milenković,
Nataša Djindjić,
Biljana Božić Nedeljković
Publication year - 2019
Publication title -
general physiology and biophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.376
H-Index - 39
eISSN - 1338-4325
pISSN - 0231-5882
DOI - 10.4149/gpb_2018032
Subject(s) - tumor necrosis factor alpha , proinflammatory cytokine , lipopolysaccharide , inflammation , chemistry , systemic inflammation , medicine , endocrinology
Immunomodulating effect of silica-rich water represents a novel field for research, especially regarding its features toward environmental pollutants. The aim of our study was to evaluate the effects of silica-rich water intake on systemic and peritoneal inflammation in rats that were chronically exposed to the low-level microwave (MW) radiation from mobile phones. Wistar Albino rats were exposed to 900 MHz MW radiation for 3 months. The four-treatment model involved rats with standard water (SW) or experimental silica-rich water intake (EW). Peritoneal macrophages (PMs) were harvested using peritoneal lavage and divided into non-stimulated and lipopolysaccharide (LPS) stimulated subgroups. The MW-exposed rats with silica-rich water (MW+EW) had lower serum tumor necrosis factor α (TNF-α) and interleukin 2 (IL-2) levels, but higher IL-10 levels, than MW+SW rats (p < 0.05). The higher TNF-α production by non-stimulated MW exposed PMs was ameliorated by the silica-rich water (p < 0.01). The MW exposition suppressed LPS potential for TNF-α synthesis in both water type groups, with greater suppression in animals that took standard water. Our results show the modulating effect of silica-rich water toward MW-induced systemic and peritoneal inflammation, which reflects the water ability to shape monocyte plasticity, thereby altering the balance between their proinflammatory and anti-inflammatory properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom