z-logo
open-access-imgOpen Access
FRACTIONATION OF THE HUMUS OF SOME CHERNOZEMIC SOILS OF SOUTHERN ALBERTA
Author(s) -
J. F. Dormaar
Publication year - 1964
Publication title -
canadian journal of soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 67
eISSN - 1918-1841
pISSN - 0008-4271
DOI - 10.4141/cjss64-033
Subject(s) - humus , fractionation , humic acid , soil water , chemistry , total organic carbon , organic matter , environmental chemistry , carbon fibers , extraction (chemistry) , fraction (chemistry) , loess , alluvium , aeolian processes , soil science , geology , chromatography , organic chemistry , geomorphology , fertilizer , materials science , composite number , composite material
Two orthic profiles, widely separated geographically, of each of four parent materials—lacustrine, alluvial–lacustrine, glacial till, and Aeolian—were selected at undisturbed sites within each of the Brown, Dark Brown, and Thin Black soil zones. Material from the Ah and Bm horizons was subjected to solvent extraction, and for each sample the total organic carbon of seven different fractions was determined.The efficiency of the procedure in extracting humus carbon decreased as the total carbon content of the soil increased. Total organic matter, the first humic acid fraction, and the combined total of the three humic acid fractions showed significant differences between soil zones. The only significant separation between all four parent materials was made by the alcohol-benzene fraction. Other parent material separations were possible only following the summation of data of several fractions, such as the three humic acid fractions or the two fulvic acid fractions. A simplification of the procedure in case of soils of one Order and a modification to overcome the impeding effect of increased carbon content are requisite.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom