z-logo
open-access-imgOpen Access
Assessment of the Human Kynurenine Pathway: Comparisons and Clinical Implications of Ethnic and Gender Differences in Plasma Tryptophan, Kynurenine Metabolites, and Enzyme Expressions at Baseline and after Acute Tryptophan Loading and Depletion
Author(s) -
Abdulla A.B. Badawy,
Donald M. Dougherty
Publication year - 2016
Publication title -
international journal of tryptophan research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.405
H-Index - 23
ISSN - 1178-6469
DOI - 10.4137/ijtr.s38189
Subject(s) - kynurenine , tryptophan , kynurenine pathway , kynurenic acid , anthranilic acid , endocrinology , medicine , chemistry , enzyme , amino acid , biochemistry
Tryptophan (Trp) metabolism via the kynurenine pathway (KP) was assessed in normal healthy US volunteers at baseline and after acute Trp depletion (ATD) and acute Trp loading (ATL) using amino acid formulations. The hepatic KP accounts for ~90% of overall Trp degradation. Liver Trp 2,3-dioxygenase (TDO) contributes ~70% toward Trp oxidation, with the remainder achieved by subsequent rate-limiting enzymes in the KP. TDO is not influenced by a 1.15 g Trp load, but is maximally activated by a 5.15 g dose. We recommend a 30 mg/kg dose for future ATL studies. ATD activates TDO and enhances the Trp flux down the KP via its leucine component. Higher plasma free [Trp] and lower total [Trp] are observed in women, with no gender differences in kynurenines. Kynurenic acid is lower in female Caucasians, which may explain their lower incidence of schizophrenia. African-American and Hispanic women have a lower TDO and Trp oxidation relative to free Trp than the corresponding men. African-American women have a potentially higher 3-hydroxyanthranilic acid/anthranilic acid ratio, which may protect them against osteoporosis. Future studies of the KP in relation to health and disease should focus on gender and ethnic differences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom