z-logo
open-access-imgOpen Access
MicroRNA Expression in Alzheimer Blood Mononuclear Cells
Author(s) -
Hyman M. Schipper,
Olivier Maës,
Howard Chertkow,
Eugenia Wang
Publication year - 2007
Publication title -
gene regulation and systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.534
H-Index - 18
ISSN - 1177-6250
DOI - 10.4137/grsb.s361
Subject(s) - microrna , gene , microarray , peripheral blood mononuclear cell , gene expression , disease , biology , microarray analysis techniques , medicine , downregulation and upregulation , bioinformatics , allele , messenger rna , genetics , pathology , in vitro
Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC) of patients with sporadic Alzheimer disease (AD). Noncoding microRNAs (miRNA) regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated whether peripheral miRNA expression is altered in this condition. MicroRNA levels were assessed using the microRNA microarray (MMChip) containing 462 human miRNA, and the results validated by real time PCR. Sixteen AD patients and sixteen normal elderly controls (NEC) were matched for ethnicity, age, gender and education. The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles. As compared to NEC, miRNAs significantly upregulated in AD subjects and confirmed by qPCR were miR-34a and 181b. Predicted target genes downregulated in Alzheimer BMC that correlated with the upregulated miRNAs were largely represented in the functional categories of Transcription/Translation and Synaptic Activity. Several miRNAs targeting the same genes were within the functional category of Injury response/Redox homeostasis. Taken together, induction of microRNA expression in BMC may contribute to the aberrant systemic decline in mRNA levels in sporadic AD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom