A Novel Model for DNA Sequence Similarity Analysis Based on Graph Theory
Author(s) -
Xingqin Qi,
Qin Wu,
Yusen Zhang,
Edgar Fuller,
CunQuan Zhang
Publication year - 2011
Publication title -
evolutionary bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.502
H-Index - 32
ISSN - 1176-9343
DOI - 10.4137/ebo.s7364
Subject(s) - phylogenetic tree , adjacency matrix , computer science , adjacency list , similarity (geometry) , sequence (biology) , graph , alignment free sequence analysis , set (abstract data type) , computational biology , sequence alignment , theoretical computer science , algorithm , artificial intelligence , genetics , biology , gene , peptide sequence , image (mathematics) , programming language
Determination of sequence similarity is one of the major steps in computational phylogenetic studies. As we know, during evolutionary history, not only DNA mutations for individual nucleotide but also subsequent rearrangements occurred. It has been one of major tasks of computational biologists to develop novel mathematical descriptors for similarity analysis such that various mutation phenomena information would be involved simultaneously. In this paper, different from traditional methods (eg, nucleotide frequency, geometric representations) as bases for construction of mathematical descriptors, we construct novel mathematical descriptors based on graph theory. In particular, for each DNA sequence, we will set up a weighted directed graph. The adjacency matrix of the directed graph will be used to induce a representative vector for DNA sequence. This new approach measures similarity based on both ordering and frequency of nucleotides so that much more information is involved. As an application, the method is tested on a set of 0.9-kb mtDNA sequences of twelve different primate species. All output phylogenetic trees with various distance estimations have the same topology, and are generally consistent with the reported results from early studies, which proves the new method's efficiency; we also test the new method on a simulated data set, which shows our new method performs better than traditional global alignment method when subsequent rearrangements happen frequently during evolutionary history.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom