z-logo
open-access-imgOpen Access
A Novel Approach to Identify Candidate Prognostic Factors for Hepatitis C Treatment Response Integrating Clinical and Viral Genetic Data
Author(s) -
Alicia Amadoz,
Fernando GónzálezCandelas
Publication year - 2015
Publication title -
evolutionary bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.502
H-Index - 32
ISSN - 1176-9343
DOI - 10.4137/ebo.s20853
Subject(s) - ribavirin , pegylated interferon , viral hepatitis , hepatitis c virus , viral load , medicine , genotype , interferon , hepatitis c , immunology , virology , virus , biology , genetics , gene
The combined therapy of pegylated interferon (IFN) plus ribavirin (RBV) has been for a long time the standard treatment for patients infected with hepatitis C virus (HCV). In the case of genotype 1, only 38%-48% of patients have a positive response to the combined treatment. In previous studies, viral genetic information has been occasionally included as a predictor. Here, we consider viral genetic variation in addition to 11 clinical and 19 viral populations and evolutionary parameters to identify candidate baseline prognostic factors that could be involved in the treatment outcome. We obtained potential prognostic models for HCV subtypes la and lb in combination as well as separately. We also found that viral genetic information is relevant for the combined treatment assessment of patients, as the potential prognostic model of joint subtypes includes 9 viral-related variables out of 11. Our proposed methodology fully characterizes viral genetic information and finds a combination of positions that modulate inter-patient variability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom