z-logo
open-access-imgOpen Access
Linear Discriminant Functions in connection with the micro-RNA Diagnosis of Colon Cancer
Author(s) -
Jason B. Nikas,
Walter C. Low
Publication year - 2011
Publication title -
cancer informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 31
ISSN - 1176-9351
DOI - 10.4137/cin.s8779
Subject(s) - colorectal cancer , biomarker , medicine , stage (stratigraphy) , carcinogenesis , cancer , linear discriminant analysis , oncology , disease , biology , artificial intelligence , paleontology , biochemistry , computer science
Early detection (localized stage) of colon cancer is associated with a five-year survival rate of 91%. Only 39% of colon cancers, however, are diagnosed at that early stage. Early and accurate diagnosis, therefore, constitutes a critical need and a decisive factor in the clinical treatment of colon cancer and its success. In this study, using supervised linear discriminant analysis, we have developed three diagnostic biomarker models that-based on global micro-RNA expression analysis of colonic tissue collected during surgery-can discriminate with a perfect accuracy between subjects with colon cancer (stages II-IV) and normal healthy subjects. We developed our three diagnostic biomarker models with 57 subjects [40 with colon cancer (stages II-IV) and 17 normal], and we validated them with 39 unknown (new and different) subjects [28 with colon cancer (stages II-IV) and 11 normal]. For all three diagnostic models, both the overall sensitivity and specificity were 100%. The nine most significant micro-RNAs identified, which comprise the input variables to the three linear discriminant functions, are associated with genes that regulate oncogenesis, and they play a paramount role in the development of colon cancer, as evidenced in the tumor tissue itself. This could have a significant impact in the fight against this disease, in that it may lead to the development of an early serum or blood diagnostic test based on the detection of those nine key micro-RNAs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom