TIN: An R Package for Transcriptome Instability Analysis
Author(s) -
Bjarne Johannessen,
Anita Sveen,
Rolf I. Skotheim
Publication year - 2015
Publication title -
cancer informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 31
ISSN - 1176-9351
DOI - 10.4137/cin.s31363
Subject(s) - alternative splicing , genome instability , rna splicing , computational biology , transcriptome , microsatellite instability , biology , exon , genome , genetics , dna microarray , gene , bioinformatics , gene expression , microsatellite , allele , dna , rna , dna damage
Alternative splicing is a key regulatory mechanism for gene expression, vital for the proper functioning of eukaryotic cells. Disruption of normal pre-mRNA splicing has the potential to cause and reinforce human disease. Owing to rapid advances in high-throughput technologies, it is now possible to identify novel mRNA isoforms and detect aberrant splicing patterns on a genome scale, across large data sets. Analogous to the genomic types of instability describing cancer genomes (eg, chromosomal instability and microsatellite instability), transcriptome instability (TIN) has recently been proposed as a splicing-related genome-wide characteristic of certain solid cancers. We present the R package TIN, available from Bioconductor, which implements a set of methods for TIN analysis based on exon-level microarray expression profiles. TIN provides tools for estimating aberrant exon usage across samples and for analyzing correlation patterns between TIN and splicing factor expression levels.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom