z-logo
open-access-imgOpen Access
Powerful Tukey's One Degree-of-Freedom Test for Detecting Gene-Gene and Gene-Environment Interactions
Author(s) -
Yaping Wang,
Donghui Li,
Peng Wei
Publication year - 2015
Publication title -
cancer informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 31
ISSN - 1176-9351
DOI - 10.4137/cin.s17305
Subject(s) - missing heritability problem , genome wide association study , heritability , single nucleotide polymorphism , computational biology , genetics , statistical power , multiple comparisons problem , genetic association , principal component analysis , biology , computer science , gene , statistics , mathematics , genotype
Genome-wide association studies (GWASs) have identified thousands of single nucleotide polymorphisms (SNPs) robustly associated with hundreds of complex human diseases including cancers. However, the large number of GWAS-identified genetic loci only explains a small proportion of the disease heritability. This "missing heritability" problem has been partly attributed to the yet-to-be-identified gene-gene (G × G) and gene-environment (G × E) interactions. In spite of the important roles of G × G and G × E interactions in understanding disease mechanisms and filling in the missing heritability, straightforward GWAS scanning for such interactions has very limited statistical power, leading to few successes. Here we propose a two-step statistical approach to test G × G/G × E interactions: the first step is to perform principal component analysis (PCA) on the multiple SNPs within a gene region, and the second step is to perform Tukey's one degree-of-freedom (1-df) test on the leading PCs. We derive a score test that is computationally fast and numerically stable for the proposed Tukey's 1-df interaction test. Using extensive simulations we show that the proposed approach, which combines the two parsimonious models, namely, the PCA and Tukey's 1-df form of interaction, outperforms other state-of-the-art methods. We also demonstrate the utility and efficiency gains of the proposed method with applications to testing G × G interactions for Crohn's disease using the Wellcome Trust Case Control Consortium (WTCCC) GWAS data and testing G × E interaction using data from a case-control study of pancreatic cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom