z-logo
open-access-imgOpen Access
Practical Issues in Screening and Variable Selection in Genome-Wide Association Analysis
Author(s) -
Sung Yeon Hong,
Yongkang Kim,
Taesung Park
Publication year - 2014
Publication title -
cancer informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 31
ISSN - 1176-9351
DOI - 10.4137/cin.s16350
Subject(s) - lasso (programming language) , feature selection , genome wide association study , elastic net regularization , computer science , genetic association , single nucleotide polymorphism , selection (genetic algorithm) , regression , false discovery rate , inference , regression analysis , data mining , computational biology , statistics , artificial intelligence , machine learning , biology , mathematics , genetics , world wide web , genotype , gene
Variable selection methods play an important role in high-dimensional statistical modeling and analysis. Computational cost and estimation accuracy are the two main concerns for statistical inference from ultrahigh-dimensional data. In particular, genome-wide association studies (GWAS), which focus on identifying single nucleotide polymorphisms (SNPs) associated with a disease of interest, have produced ultrahigh-dimensional data. Numerous methods have been proposed to handle GWAS data. Most statistical methods have adopted a two-stage approach: pre-screening for dimensional reduction and variable selection to identify causal SNPs. The pre-screening step selects SNPs in terms of their P-values or the absolute values of the regression coefficients in single SNP analysis. Penalized regressions, such as the ridge, lasso, adaptive lasso, and elastic-net regressions, are commonly used for the variable selection step. In this paper, we investigate which combination of pre-screening method and penalized regression performs best on a quantitative phenotype using two real GWAS datasets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom