z-logo
open-access-imgOpen Access
Functional Annotation of Putative Regulatory Elements at Cancer Susceptibility Loci
Author(s) -
Stephanie A. Rosse,
Paul L. Auer,
Christopher S. Carlson
Publication year - 2014
Publication title -
cancer informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 31
ISSN - 1176-9351
DOI - 10.4137/cin.s13789
Subject(s) - computational biology , genome wide association study , genetic association , biology , annotation , leverage (statistics) , genetics , bioinformatics , single nucleotide polymorphism , gene , computer science , machine learning , genotype
Most cancer-associated genetic variants identified from genome-wide association studies (GWAS) do not obviously change protein structure, leading to the hypothesis that the associations are attributable to regulatory polymorphisms. Translating genetic associations into mechanistic insights can be facilitated by knowledge of the causal regulatory variant (or variants) responsible for the statistical signal. Experimental validation of candidate functional variants is onerous, making bioinformatic approaches necessary to prioritize candidates for laboratory analysis. Thus, a systematic approach for recognizing functional (and, therefore, likely causal) variants in noncoding regions is an important step toward interpreting cancer risk loci. This review provides a detailed introduction to current regulatory variant annotations, followed by an overview of how to leverage these resources to prioritize candidate functional polymorphisms in regulatory regions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom