z-logo
open-access-imgOpen Access
Rule-based and Lightly Supervised Methods to Predict Emotions in Suicide Notes
Author(s) -
Ted Pedersen
Publication year - 2012
Publication title -
biomedical informatics insights
Language(s) - English
Resource type - Journals
ISSN - 1178-2226
DOI - 10.4137/bii.s8953
Subject(s) - measure (data warehouse) , bigram , computer science , psychology , artificial intelligence , natural language processing , statistics , data mining , mathematics , trigram
This paper describes the Duluth systems that participated in the Sentiment Analysis track of the i2b2/VA/Cincinnati Children's 2011 Challenge. The top Duluth system was a rule-based approach derived through manual corpus analysis and the use of measures of association to identify significant ngrams. This performed in the median range of systems, attaining an F-measure of 0.45. The second system was automatically derived from the most frequent bigrams unique to one or two emotions. It achieved an F-measure of 0.36. The third system was the union of the first two, and reached an F-measure of 0.44.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom