z-logo
open-access-imgOpen Access
An Event-Related Study for Dynamic Analysis of Corticomuscular Connectivity
Author(s) -
Ou Bai,
Dandan Huang,
Peter Lin,
Jinglong Wu,
Xuedong Chen,
Ding-Yu Fei
Publication year - 2010
Publication title -
biomedical engineering and computational biology
Language(s) - English
Resource type - Journals
ISSN - 1179-5972
DOI - 10.4137/becb.s5546
Subject(s) - isometric exercise , correlogram , electroencephalography , coherence (philosophical gambling strategy) , computer science , psychology , artificial intelligence , speech recognition , physical medicine and rehabilitation , mathematics , neuroscience , statistics , medicine , physical therapy
Corticomuscular coupling estimated by EEG-EMG coherence may reveal functional cortical driving of peripheral muscular activity. EEG-EMG coherence in the beta band (15–30 Hz) has been extensively studied under isometric muscle contraction tasks. We attempted to study the time-course of corticomuscular connectivity under a dynamic target tracking task. A new device was developed for the real-time measurement of dynamic force created by pinching thumb and index fingers. Four healthy subjects who participated in this study were asked to track visual targets with the feedback forces. Spectral parameters using FFT and complex wavelet were explored for reliable estimation of event-related coherence and EEG-EMG correlogram for representing corticomuscular connectivity. Clearly distinguishable FFT-based coherence and cross-correlogram during the visual target tracking were observed with appropriate hyper-parameters for spectral estimation. The system design and the exploration of signal processing methods in this study supports further exploration of corticomuscular connectivity associated with human motor control

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom