z-logo
open-access-imgOpen Access
An Integrated Statistical Approach to Compare Transcriptomics Data across Experiments: A Case Study on the Identification of Candidate Target Genes of the Transcription Factor PPARα
Author(s) -
Mohammad Ohid Ullah,
Michael Müller,
Guido Hooiveld
Publication year - 2012
Publication title -
bioinformatics and biology insights
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 23
ISSN - 1177-9322
DOI - 10.4137/bbi.s9529
Subject(s) - false discovery rate , false positive paradox , computational biology , multiple comparisons problem , dna microarray , statistical hypothesis testing , data mining , inference , candidate gene , type i and type ii errors , identification (biology) , computer science , transcription factor , biology , bioinformatics , gene , machine learning , genetics , artificial intelligence , statistics , gene expression , mathematics , botany
An effective strategy to elucidate the signal transduction cascades activated by a transcription factor is to compare the transcriptional profiles of wild type and transcription factor knockout models. Many statistical tests have been proposed for analyzing gene expression data, but most tests are based on pair-wise comparisons. Since the analysis of microarrays involves the testing of multiple hypotheses within one study, it is generally accepted that one should control for false positives by the false discovery rate (FDR). However, it has been reported that this may be an inappropriate metric for comparing data across different experiments. Here we propose an approach that addresses the above mentioned problem by the simultaneous testing and integration of the three hypotheses (contrasts) using the cell means ANOVA model. These three contrasts test for the effect of a treatment in wild type, gene knockout, and globally over all experimental groups. We illustrate our approach on microarray experiments that focused on the identification of candidate target genes and biological processes governed by the fatty acid sensing transcription factor PPARα in liver. Compared to the often applied FDR based across experiment comparison, our approach identified a conservative but less noisy set of candidate genes with same sensitivity and specificity. However, our method had the advantage of properly adjusting for multiple testing while integrating data from two experiments, and was driven by biological inference. Taken together, in this study we present a simple, yet efficient strategy to compare differential expression of genes across experiments while controlling for multiple hypothesis testing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom