Gene Copy Number Analysis for Family Data Using Semiparametric Copula Model
Author(s) -
Ao Yuan,
Guanjie Chen,
Zhongcheng Zhou,
George E. Bonney,
Charles N. Rotimi
Publication year - 2008
Publication title -
bioinformatics and biology insights
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 23
ISSN - 1177-9322
DOI - 10.4137/bbi.s839
Subject(s) - copula (linguistics) , comparative genomic hybridization , copy number variation , computer science , cluster analysis , multivariate statistics , marginal model , data mining , copy number analysis , computational biology , biology , econometrics , genome , mathematics , artificial intelligence , genetics , machine learning , regression analysis , gene
Gene copy number changes are common characteristics of many genetic disorders. A new technology, array comparative genomic hybridization (a-CGH), is widely used today to screen for gains and losses in cancers and other genetic diseases with high resolution at the genome level or for specific chromosomal region. Statistical methods for analyzing such a-CGH data have been developed. However, most of the existing methods are for unrelated individual data and the results from them provide explanation for horizontal variations in copy number changes. It is potentially meaningful to develop a statistical method that will allow for the analysis of family data to investigate the vertical kinship effects as well. Here we consider a semiparametric model based on clustering method in which the marginal distributions are estimated nonparametrically, and the familial dependence structure is modeled by copula. The model is illustrated and evaluated using simulated data. Our results show that the proposed method is more robust than the commonly used multivariate normal model. Finally, we demonstrated the utility of our method using a real dataset.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom