Identification and Investigation of Drosophila Postsynaptic Density Homologs
Author(s) -
Faith L. W. Liebl,
David E. Featherstone
Publication year - 2008
Publication title -
bioinformatics and biology insights
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 23
ISSN - 1177-9322
DOI - 10.4137/bbi.s2010
Subject(s) - postsynaptic density , drosophila melanogaster , ampa receptor , postsynaptic potential , synapse , receptor , biology , microbiology and biotechnology , neurotransmission , silent synapse , excitatory postsynaptic potential , neuroscience , drosophila (subgenus) , genetics , gene , glutamate receptor
AMPA receptors are responsible for fast excitatory transmission in the CNS and the trafficking of these receptors has been implicated in LTP and learning and memory. These receptors reside in the postsynaptic density, a network of proteins that links the receptors to downstream signaling components and to the neuronal cytoskeleton. To determine whether the fruit fly, Drosophila melanogaster, possesses a similar array of proteins as are found at the mammalian PSD, we identified Drosophila homologs of 95.8% of mammalian PSD proteins. We investigated, for the first time, the role of one of these PSD proteins, Pod1 in GluR cluster formation at the Drosophila neuromuscular junction and found that mutations in pod1 resulted in a specific loss of A-type receptors at the synapse.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom