Axiom of Choice in nonstandard set theory
Author(s) -
Hrbacek
Publication year - 2012
Publication title -
journal of logic and analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.278
H-Index - 4
ISSN - 1759-9008
DOI - 10.4115/jla.2012.4.8
Subject(s) - axiom of choice , mathematics , zermelo–fraenkel set theory , urelement , constructive set theory , continuum hypothesis , pure mathematics , axiom independence , axiom , set theory , set (abstract data type) , algebra over a field , calculus (dental) , mathematical economics , mathematical analysis , geometry , computer science , programming language , medicine , dentistry
We verify that the best-known nonstandard set theories: IST, BST, and HST, with the Axiom of Choice deleted, are conservative extensions of ZF + Boolean Prime Ideal Theorem. 2010 Mathematics Subject Classification 26E35 (primary); 03E25, 03E70, 03H05 (secondary)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom