z-logo
open-access-imgOpen Access
Splitting in solvable groups of finite Morley rank
Author(s) -
Olivier Frécon
Publication year - 2010
Publication title -
journal of logic and analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.278
H-Index - 4
ISSN - 1759-9008
DOI - 10.4115/jla.2010.2.4
Subject(s) - mathematics , rank (graph theory) , combinatorics , pure mathematics , algebra over a field
We exhibit counterexamples to a Conjecture of Nesin, since we build a connected solvable group with finite center and of finite Morley rank in which no normal nilpotent subgroup has a nilpotent complement. The main result says that each centerless connected solvable group G of finite Morley has a normal nilpotent subgroup U and an abelian subgroup T such that G = U o T , if and only if, for any field K of finite Morley rank, the connected definable subgroups of K∗ are pseudo-tori. Also we build a centerless connected solvable group G of finite Morley rank with no definable representation over a direct sum of interpretable fields. 2000 Mathematics Subject Classification 03C45, 20A15 (primary); 03C60 (secondary)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom