z-logo
open-access-imgOpen Access
Remote sensing for predicting potential habitats of Oncomelania hupensis in Hongze, Baima and Gaoyou lakes in Jiangsu province, China
Author(s) -
GuoJing Yang,
Penelope Vounatsou,
Marcel Tanner,
Xiaog Zhou,
Jürg Utzinger
Publication year - 2006
Publication title -
geospatial health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.545
H-Index - 36
eISSN - 1970-7096
pISSN - 1827-1987
DOI - 10.4081/gh.2006.283
Subject(s) - oncomelania hupensis , geography , habitat , oncomelania , normalized difference vegetation index , flooding (psychology) , china , ecology , schistosoma japonicum , climate change , wetland , snail , vegetation (pathology) , bamboo , physical geography , schistosomiasis , biology , psychology , zoology , medicine , archaeology , pathology , helminths , psychotherapist
Political and health sector reforms, along with demographic, environmental and socio-economic transformations in the face of global warming, could cause the re-emergence of schistosomiasis in areas where transmission has been successfully interrupted and its emergence in previously non-endemic areas in China. In the present study, we used geographic information systems and remote sensing techniques to predict potential habitats of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Focussing on the Hongze, Baima and Gaoyou lakes in Jiangsu province in eastern China, we developed a model using the normalized difference vegetation index, a tasseled-cap transformed wetness index, and flooding areas to predict snail habitats at a small scale. Data were extracted from two Landsat images, one taken during a typical dry year and the other obtained three years later during a flooding event. An area of approximately 163.6 km2 was predicted as potential O. hupensis habitats around the three lakes, which accounts for 4.3% of the estimated snail habitats in China. In turn, these predicted snail habitats are risk areas for transmission of schistosomiasis, and hence illustrate the scale of the possible impact of climate change and other ecological transformations. The generated risk map can be used by health policy makers to guide mitigation policies targetting the possible spread of O. hupensis, and with the aim of containing the transmission of S. japonicum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom