MUC1 marks collecting tubules, renal vesicles, comma- and S-shaped bodies in human developing kidney
Author(s) -
Daniela Fanni,
Nicoletta Iacovidou,
Andrea Locci,
Clara Gerosa,
Sonia Nemolato,
Peter Van Eyken,
G. Monga,
S. Mellou,
Gavino Faa,
Vassilios Fanos
Publication year - 2012
Publication title -
european journal of histochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.754
H-Index - 42
eISSN - 2038-8306
pISSN - 1121-760X
DOI - 10.4081/ejh.2012.e40
Subject(s) - mesenchyme , muc1 , mesenchymal stem cell , epithelial–mesenchymal transition , biology , pathology , kidney , microbiology and biotechnology , human kidney , transition (genetics) , mucin , endocrinology , medicine , biochemistry , gene
MUC1 is a transmembrane glycoprotein, apically expressed in most epithelial cells, used in the differential diagnosis of carcinomas and for discrimination of tumors of non-epithelial origin showing epithelioid features. Little attention has been paid so far though, on its possible significance in embryonic tissues. A preliminary study from our group revealed MUC1 expression in the cap mesenchymal cells during human nephrogenesis, suggesting a role for MUC1 in the process of mesenchymal-to-epithelial transition. This study aimed at investigating the expression pattern of MUC1 in various developing structures of human fetal kidney. Expression of MUC1 was examined in kidneys of 5 human fetuses. MUC1 immunoreactivity was detected in ureteric bud tips, in collecting tubules, in cap mesenchymal cells undergoing the initial phases of mesenchymal-to-epithelial transition, in renal vesicles, comma-bodies, and S-shaped bodies. Our previous preliminary report suggested a role for MUC1 in the initial phases of the process of mesenchymal-to-epithelial transition. The present data suggest that MUC1 expression characterizes multiple structures during human nephrogenesis, from the ureteric bud, to the initial phases of mesenchymal-to-epithelial transition and that MUC1 should be added to the genes activated during the process of mesenchymal-to-epithelial transition in the cap mesenchyme of human kidney
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom