z-logo
open-access-imgOpen Access
Large-scale chromatin morpho-functional changes during mammalian oocyte growth and differentiation
Author(s) -
A.M. Luciano,
Valentina Lodde,
Federica Franciosi,
Irene Tessaro,
D. Corbani,
S. Modina
Publication year - 2012
Publication title -
european journal of histochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.754
H-Index - 42
eISSN - 2038-8306
pISSN - 1121-760X
DOI - 10.4081/ejh.2012.e37
Subject(s) - oocyte , chromatin , biology , germinal vesicle , microbiology and biotechnology , chromatin remodeling , prophase , oogenesis , meiosis , somatic cell , folliculogenesis , genetics , gene , embryogenesis , embryo
Mammalian oocyte development is characterized by impressive changes in chromatin structure and function within the germinal vesicle (GV). These changes are crucial to confer the oocyte with meiotic and developmental competencies. In cow, oocytes collected from early and middle antral follicles present four patterns of chromatin configuration, from GV0 to GV3, and its progressive condensation has been related to the achievement of developmental potential. During oogenesis, follicular cells are essential for the acquisition of meiotic and developmental competencies and communicate with the oocyte by paracrine and gap junction mediated mechanisms. We recently analyzed the role of gap junction communications (GJC) on chromatin remodeling process during the specific phase of folliculogenesis that coincides with the transcriptional silencing and sequential acquisition of meiotic and developmental capabilities. Our studies demonstrated that GJC between germinal and somatic compartments plays a fundamental role in the regulation of chromatin remodeling and transcription activities during the final oocyte differentiation, throughout cAMP dependent mechanism(s)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom