z-logo
open-access-imgOpen Access
Use of Nucleic Acid Analogs for the Study of Nucleic Acid Interactions
Author(s) -
Shuichi Nakano,
Masayuki Fujii,
Naoki Sugimoto
Publication year - 2011
Publication title -
journal of nucleic acids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.621
H-Index - 32
eISSN - 2090-021X
pISSN - 2090-0201
DOI - 10.4061/2011/967098
Subject(s) - nucleic acid , stacking , oligonucleotide , base pair , nucleic acid structure , dna , moiety , stereochemistry , nucleoside , chemistry , molecular structure of nucleic acids: a structure for deoxyribose nucleic acid , combinatorial chemistry , crystallography , biochemistry , rna , organic chemistry , gene
Unnatural nucleosides have been explored to expand the properties and the applications of oligonucleotides. This paper briefly summarizes nucleic acid analogs in which the base is modified or replaced by an unnatural stacking group for the study of nucleic acid interactions. We also describe the nucleoside analogs of a base pair-mimic structure that we have examined. Although the base pair-mimic nucleosides possess a simplified stacking moiety of a phenyl or naphthyl group, they can be used as a structural analog of Watson-Crick base pairs. Remarkably, they can adopt two different conformations responding to their interaction energies, and one of them is the stacking conformation of the nonpolar aromatic group causing the site-selective flipping of the opposite base in a DNA double helix. The base pair-mimic nucleosides can be used to study the mechanism responsible for the base stacking and the flipping of bases out of a nucleic acid duplex.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom