z-logo
open-access-imgOpen Access
Human Coronary Artery Smooth Muscle Cell Responses to Bioactive Polyelectrolyte Multilayer Interfaces
Author(s) -
Robert G. Newcomer,
Maroun D. Moussallem,
T.C. Stevenson Keller,
Joseph B. Schlenoff,
QingXiang Amy Sang
Publication year - 2010
Publication title -
biotechnology research international
Language(s) - English
Resource type - Journals
eISSN - 2090-3138
pISSN - 2090-3146
DOI - 10.4061/2011/854068
Subject(s) - artery , medicine , polyelectrolyte , smooth muscle , cardiology , materials science , polymer , composite material
Under normal physiological conditions, mature human coronary artery smooth muscle cells (hCASMCs) exhibit a “contractile” phenotype marked by low rates of proliferation and protein synthesis, but these cells possess the remarkable ability to dedifferentiate into a “synthetic” phenotype when stimulated by conditions of pathologic stress. A variety of polyelectrolyte multilayer (PEMU) films are shown here to exhibit bioactive properties that induce distinct responses from cultured hCASMCs. Surfaces terminated with Nafion or poly(styrenesulfonic acid) (PSS) induce changes in the expression and organization of intracellular proteins, while a hydrophilic, zwitterionic copolymer of acrylic acid and 3-[2-(acrylamido)-ethyl dimethylammonio] propane sulfonate (PAA-co-PAEDAPS) is resistant to cell attachment and suppresses the formation of key cytoskeletal components. Differential expression of heat shock protein 90 and actin is observed, in terms of both their magnitude and cellular localization, and distinct cytoplasmic patterns of vimentin are seen. The ionophore A23187 induces contraction in confluent hCASMC cultures on Nafion-terminated surfaces. These results demonstrate that PEMU coatings exert direct effects on the cytoskeletal organization of attaching hCASMCs, impeding growth in some cases, inducing changes consistent with phenotypic modulation in others, and suggesting potential utility for PEMU surfaces as a coating for coronary artery stents and other implantable medical devices

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom