Expression Patterns of Cancer-Testis Antigens in Human Embryonic Stem Cells and Their Cell Derivatives Indicate Lineage Tracks
Author(s) -
Nadya Lifantseva,
A. M. Koltsova,
Т. А. Крылова,
T. K. Yakovleva,
G. G. Poljanskaya,
О. Ф. Гордеева
Publication year - 2011
Publication title -
stem cells international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 64
eISSN - 1687-9678
pISSN - 1687-966X
DOI - 10.4061/2011/795239
Subject(s) - embryoid body , embryonic stem cell , induced pluripotent stem cell , stem cell , biology , cancer stem cell , teratocarcinoma , microbiology and biotechnology , germ layer , kosr , cellular differentiation , cancer research , cell culture , genetics , gene
Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma (hEC) cells, and cancer cell lines of neuroectodermal and mesodermal origin. Undifferentiated hES cells and embryoid body cells expressed MAGE-A3, -A6, -A4, -A8, and GAGEs while later differentiated derivatives expressed only MAGE-A8 or MAGE-A4. Likewise, mouse pluripotent stem cells also express CTAs of Magea but not Mageb family. Despite similarity of the hES and hEC cell expression patterns, MAGE-A2 and MAGE-B2 were detected only in hEC cells but not in hES cells. Moreover, our analysis has shown that CTAs are aberrantly expressed in cancer cell lines and display low tissue specificity. The identification of CTA expression patterns in pluripotent stem cells and their derivatives may be useful for isolation of abnormally CTA-expressing cells to improve the safety of stem-cell based therapy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom