Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode
Author(s) -
Saeed Shahrokhian,
ReyhanehSadat Saberi
Publication year - 2011
Publication title -
international journal of electrochemistry
Language(s) - English
Resource type - Journals
eISSN - 2090-3537
pISSN - 2090-3529
DOI - 10.4061/2011/764294
Subject(s) - polypyrrole , ascorbic acid , detection limit , glassy carbon , electrode , materials science , sulfonic acid , analytical chemistry (journal) , polymerization , electrochemistry , reference electrode , hydroquinone , chemistry , inorganic chemistry , chromatography , cyclic voltammetry , composite material , polymer chemistry , polymer , organic chemistry , food science
A very sensitive electrochemical sensor constructed of a glassy carbon electrode modified with a layer-by-layer MWCNT/doped-overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enlarged microscopic surface area of the electrode. The effect of the experimental conditions on the electrode response, such as types of counter ion, pyrrole and counter ion concentration, potential and number of cycles in the polymerization procedure, amount of MWCNT, and the pH, were investigated. Under the optimized conditions, the calibration curve was obtained over two concentration ranges of 2 × 10−7–6 × 10−6 M and 4 × 10−5–1 × 10−4 M of AC with a linear correlation coefficient (R2) of 0.9959 and 0.9947, respectively. The estimated detection limit (3σ) for AC was obtained as 5 × 10−8 M. The developed method was successfully applied to analyze the pharmaceutical preparations of AC, and a recovery of 95% with a relative standard deviation of 0.98% was obtained for AC
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom