z-logo
open-access-imgOpen Access
Synthesis of Isopropyl Ferulate Using Silica-Immobilized Lipase in an Organic Medium
Author(s) -
Ashok Kumar,
Shamsher S. Kanwar
Publication year - 2011
Publication title -
enzyme research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.439
H-Index - 39
eISSN - 2090-0406
pISSN - 2090-0414
DOI - 10.4061/2011/718949
Subject(s) - chemistry , biocatalysis , lipase , ferulic acid , glutaraldehyde , isopropyl alcohol , isopropyl , nuclear chemistry , salt (chemistry) , chromatography , organic chemistry , catalysis , enzyme , reaction mechanism
Immobilization of lipases has proved to be a useful technique for improving an enzyme's activity in organic solvents. In the present study, the performance of a silica-immobilized lipase was evaluated for the synthesis of isopropyl ferulate in DMSO. The biocatalyst was cross-linked onto the matrix with 1% glutaraldehyde. The effects of various parameters, molar ratio of ferulic acid to isopropyl alcohol (25 mM : 100 mM), concentration of biocatalyst (2.5–20 mg/mL), molecular sieves (25–250 mg/mL), and various salt ions, were studied consecutively as a function of percent esterification. Immobilized lipase at 25 mg/mL showed maximum esterification (~84%) of ferulic acid and isopropanol at a molar ratio of 25 mM : 100 mM, respectively, in DMSO at 45°C in 3 h under shaking (150 rpm). To overcome the inhibitory effect of water (a byproduct) if any, in the reaction mixture, molecular sieves (3 Å × 1.5 mm; 100 mg/mL) were added to the reaction mixture to promote the forward reaction. Salt ions like Ca2+, Cd2+, and Fe2+ enhanced the activity of immobilized biocatalyst while a few ions like Co2+, Zn2+, Mg2+, Mn2+, Al3+, and Na+ had mild inhibitory effect. Approximately, one third of total decrease in the esterification efficacy was observed after the 5th repetitive cycle of esterification

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom