z-logo
open-access-imgOpen Access
Anatomical Correlates of Age-Related Working Memory Declines
Author(s) -
Evan T. Schulze,
Elizabeth Geary,
T. Susmaras,
James Thomas Paliga,
Pauline M. Maki,
Deborah M. Little
Publication year - 2011
Publication title -
journal of aging research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.564
H-Index - 43
eISSN - 2090-2212
pISSN - 2090-2204
DOI - 10.4061/2011/606871
Subject(s) - working memory , white matter , functional magnetic resonance imaging , fractional anisotropy , diffusion mri , magnetic resonance imaging , neuroscience , prefrontal cortex , medicine , n back , brain aging , psychology , audiology , cognition , radiology
Aging studies consistently show a relationship between decreased gray matter volume and decreased performance on working memory tasks. Few aging studies have investigated white matter changes in relation to functional brain changes during working memory tasks. Twenty-five younger and 25 older adults underwent anatomical magnetic resonance imaging (MRI) scans to measure gray matter volume, diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) as a measure of white matter integrity, and functional magnetic resonance imaging (fMRI) while performing a working memory task. Significant increases in activation (fMRI) were seen in the left dorsal and ventral lateral prefrontal cortex with increased working memory load and with increased age (older showing greater bilateral activation). Partial correlational analyses revealed that even after controlling for age, frontal FA correlated significantly with fMRI activation during performance on the working memory task. These findings highlight the importance of white matter integrity in working memory performance associated with normal aging.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom