Production ofPseudomonas aeruginosaIntercellular Small Signaling Molecules in Human Burn Wounds
Author(s) -
YokAi Que,
Ronen Hazan,
Colleen M. Ryan,
Sylvain Milot,
François Lépine,
Martha Lydon,
Laurence G. Rahme
Publication year - 2011
Publication title -
journal of pathogens
Language(s) - English
Resource type - Journals
eISSN - 2090-3065
pISSN - 2090-3057
DOI - 10.4061/2011/549302
Subject(s) - pseudomonas aeruginosa , medicine , microbiology and biotechnology , intracellular , bacteria , biology , genetics
Pseudomonas aeruginosa has developed a complex cell-to-cell communication system that relies on low-molecular weight excreted molecules to control the production of its virulence factors. We previously characterized the transcriptional regulator MvfR, that controls a major network of acute virulence functions in P. aeruginosa through the control of its ligands, the 4-hydroxy-2-alkylquinolines (HAQs)—4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS). Though HHQ and PQS are produced in infected animals, their ratios differ from those in bacterial cultures. Because these molecules are critical for the potency of activation of acute virulence functions, here we investigated whether they are also produced during human P. aeruginosa acute wound infection and whether their ratio is similar to that observed in P. aeruginosa -infected mice. We found that a clinically relevant P. aeruginosa isolate produced detectable levels of HAQs with ratios of HHQ and PQS that were similar to those produced in burned and infected animals, and not resembling ratios in bacterial cultures. These molecules could be isolated from wound tissue as well as from drainage liquid. These results demonstrate for the first time that HAQs can be isolated and quantified from acute human wound infection sites and validate the relevance of previous studies conducted in mammalian models of infection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom