Gadoxetate Acid-Enhanced MR Imaging for HCC: A Review for Clinicians
Author(s) -
Jendana Chanyaputhipong,
Su-Chong Albert Low,
Pierce K. H. Chow
Publication year - 2011
Publication title -
international journal of hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.734
H-Index - 14
eISSN - 2090-3448
pISSN - 2090-3456
DOI - 10.4061/2011/489342
Subject(s) - medicine , hepatocellular carcinoma , gadoxetic acid , magnetic resonance imaging , radiology , lesion , nuclear medicine , pathology , gadolinium dtpa
Hepatocellular carcinoma (HCC) is increasingly being detected at an earlier stage, owing to the screening programs and regular imaging follow-up in high-risk populations. Small HCCs still pose diagnostic challenges on imaging due to decreased sensitivity and increased frequency of atypical features. Differentiating early HCC from premalignant or benign nodules is important as management differs and has implications on both the quality of life and the overall survival for the patients. Gadoxetate acid (Gd-EOB-DTPA, Primovist ® , Bayer Schering Pharma) is a relatively new, safe and well-tolerated liver-specific contrast agent for magnetic resonance (MR) imaging of the liver that has combined perfusion- and hepatocyte-specific properties, allowing for the acquisition of both dynamic and hepatobiliary phase images. Its high biliary uptake and excretion improves lesion detection and characterization by increasing liver-to-lesion conspicuity in the added hepatobiliary phase imaging. To date, gadoxetate acid-enhanced MRI has been mostly shown to be superior to unenhanced MRI, computed tomography, and other types of contrast agents in the detection and characterization of liver lesions. This review article focuses on the evolving role of gadoxetate acid in the characterization of HCC, differentiating it from other mimickers of HCC.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom