z-logo
open-access-imgOpen Access
Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration
Author(s) -
R. C. Patra,
Amiya K. Rautray,
D. Swarup
Publication year - 2011
Publication title -
veterinary medicine international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.62
H-Index - 30
eISSN - 2090-8113
pISSN - 2042-0048
DOI - 10.4061/2011/457327
Subject(s) - oxidative stress , cadmium , xenobiotic , pollutant , reactive oxygen species , toxicity , pathogenesis , detoxification (alternative medicine) , dna damage , oxidative phosphorylation , chemistry , toxicology , biology , medicine , immunology , biochemistry , enzyme , dna , pathology , alternative medicine , organic chemistry
Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthropogenic sources including mining, smelting, and other industrial processes are responsible for human and animal exposure. These pollutants, many a times, are copollutants leading to concurrent exposure to living beings and resultant synergistic deleterious health effects. Several mechanisms have been explained for the damaging effects on the body system. Of late, oxidative stress has been implicated in the pathogenesis of the lead- and cadmium-induced pathotoxicity. Several ameliorative measures to counteract the oxidative damage to the body system aftermath or during exposure to these toxicants have been assessed with the use of antioxidants. The present review focuses on mechanism of lead- and cadmium-induced oxidate damages and the ameliorative measures to counteract the oxidative damage and pathotoxicity with the use of supplemented antioxidants for their beneficial effects

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom