Towards Al 3 + -Induced Manganese-Containing Superoxide Dismutase Inactivation and Conformational Changes: An Integrating Study with Docking Simulations
Author(s) -
Jiang-Liu Yang,
ShangJun Yin,
Yue-Xiu Si,
Zhi-Rong Lü,
Xiangrong Shao,
Daeui Park,
Hae Young Chung,
HaiMeng Zhou,
Guoying Qian,
Ziping Zhang
Publication year - 2011
Publication title -
enzyme research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.439
H-Index - 39
eISSN - 2090-0406
pISSN - 2090-0414
DOI - 10.4061/2011/307464
Subject(s) - computer science , algorithm , mathematics
Superoxide dismutase (SOD, EC 1.15.1.1) plays an important antioxidant defense role in skins exposed to oxygen. We studied the inhibitory effects of Al3+ on the activity and conformation of manganese-containing SOD (Mn-SOD). Mn-SOD was significantly inactivated by Al3+ in a dose-dependent manner. The kinetic studies showed that Al3+ inactivated Mn-SOD follows the first-order reaction. Al3+ increased the degree of secondary structure of Mn-SOD and also disrupted the tertiary structure of Mn-SOD, which directly resulted in enzyme inactivation. We further simulated the docking between Mn-SOD and Al3+ (binding energy for Dock 6.3: −14.07 kcal/mol) and suggested that ASP152 and GLU157 residues were predicted to interact with Al3+, which are not located in the Mn-contained active site. Our results provide insight into the inactivation of Mn-SOD during unfolding in the presence of Al3+ and allow us to describe a ligand binding via inhibition kinetics combined with the computational prediction
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom