Eicosanoid Production following One Bout of Exercise in Middle-Aged African American Pre- and Stage 1 Hypertensives
Author(s) -
Sheara T. Williamson,
Deepti Varma,
Michael D. Brown,
Susan A. Jansen
Publication year - 2011
Publication title -
journal of aging research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.564
H-Index - 43
eISSN - 2090-2212
pISSN - 2090-2204
DOI - 10.4061/2011/302802
Subject(s) - medicine , prostacyclin , eicosanoid , aerobic exercise , endocrinology , thromboxane a2 , thromboxane , urine , arachidonic acid , platelet , chemistry , biochemistry , enzyme
Endothelial dysfunction and a sedentary lifestyle may be involved in the development of hypertension which is proliferative among middle-aged African Americans (AA). Signaling molecules derived from the oxidation of 20-carbon fatty acid molecules known as eicosanoids influence vascular tone. The relationship between aerobic fitness and eicosanoid formation following exercise in middle-aged African American hypertensives is unknown. Purpose. To determine the relationship between aerobic capacity and eicosanoid formation after a bout of moderate-intensity exercise in middle-aged AA hypertensives. Methods. Ten sedentary hypertensive AA underwent 50 min of aerobic exercise at 65% VO2max. Urine was collected for 24 hr on two occasions, prior to testing and immediately following the bout of exercise. Urinary metabolites of prostacyclin (6-keto PGF1α) and thromboxane (11-dTXB2) were measured during the day and night periods by high-performance liquid chromatography (HPLC). Results. 6-keto PGF1α levels significantly increased (=.04) following the bout of exercise compared to the control day. There was a significant relationship (=.49, <.05) between 6-keto PGF1α levels and VO2max during the exercise day. Conclusion. Based on this preliminary study, there appears to be a relationship between aerobic capacity and exercise-induced 6-keto PGF1α production in middle-aged hypertensive AAs. AAs with lower VO2max had lower 6-keto PGF1α formation
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom