z-logo
open-access-imgOpen Access
Potentiometric Response Characteristics of Membrane-BasedCs+-Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres
Author(s) -
Shane M. Peper,
Chad Gonczy
Publication year - 2011
Publication title -
international journal of electrochemistry
Language(s) - English
Resource type - Journals
eISSN - 2090-3537
pISSN - 2090-3529
DOI - 10.4061/2011/276896
Subject(s) - ethylene glycol , potentiometric titration , ether , chemistry , materials science , nuclear chemistry , ion , organic chemistry
Cs+-selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1×10−3 and 1×10−4 M Cs+, a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10-1–10-5 M Cs+, a conventional lower detection limit of 8.1×10−6 M Cs+, and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom