Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia
Author(s) -
Nicholas A. Eisele,
Deborah M. Anderson
Publication year - 2011
Publication title -
journal of pathogens
Language(s) - English
Resource type - Journals
eISSN - 2090-3065
pISSN - 2090-3057
DOI - 10.4061/2011/249802
Subject(s) - respiratory epithelium , microbiology and biotechnology , immune system , pneumonia , lung , epithelium , inflammation , immunology , biology , antimicrobial peptides , virulence , medicine , antimicrobial , pathology , gene , biochemistry
Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom