GSK‐3 in Neurodegenerative Diseases
Author(s) -
Peng Lei,
Scott Ayton,
Ashley I. Bush,
Paul A. Adlard
Publication year - 2011
Publication title -
international journal of alzheimer s disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.657
H-Index - 49
eISSN - 2090-8024
pISSN - 2090-0252
DOI - 10.4061/2011/189246
Subject(s) - gsk 3 , pathogenesis , neuroscience , neurodegeneration , disease , gsk3b , phosphorylation , parkinson's disease , lrrk2 , transgene , mechanism (biology) , biology , medicine , microbiology and biotechnology , gene , genetics , immunology , pathology , philosophy , epistemology
Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes, and its dysregulation is implicated in the pathogenesis of diverse diseases. In this paper we will focus on the dysfunction of GSK-3 in Alzheimer's disease and Parkinson's disease. Specifically, GSK-3 is known to interact with tau, β-amyloid (Aβ), and α-synuclein, and as such may be crucially involved in both diseases. Aβ production, for example, is regulated by GSK-3, and its toxicity is mediated by GSK-induced tau phosphorylation and degeneration. α-synuclein is a substrate for GSK-3 and GSK-3 inhibition protects against Parkinsonian toxins. Lithium, a GSK-3 inhibitor, has also been shown to affect tau, Aβ, and α-synuclein in cell culture, and transgenic animal models. Thus, understanding the role of GSK-3 in neurodegenerative diseases will enhance our understanding of the basic mechanisms underlying the pathogenesis of these disorders and also facilitate the identification of new therapeutic avenues.Restricted Access: Metadata Onl
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom