z-logo
open-access-imgOpen Access
Spacer Length Modification Facilitates Discrimination between Normal and Neoplastic Cells and Provides Clinically Relevant CD37 CAR T Cells
Author(s) -
Shingo Okuno,
Yoshitaka Adachi,
Seitaro Terakura,
Jakrawadee Julamanee,
Toshiyasu Sakai,
Koji Umemura,
Kotaro Miyao,
Tatsunori Goto,
Atsushi Murase,
Kazuyuki Shimada,
Tetsuya Nishida,
Makoto Murata,
Hitoshi Kiyoi
Publication year - 2021
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.2000768
Subject(s) - cd19 , cd28 , t cell , haematopoiesis , cancer research , il 2 receptor , cell culture , microbiology and biotechnology , biology , stem cell , immunology , immune system , flow cytometry , genetics
Despite the remarkable initial efficacy of CD19 chimeric Ag receptor T (CAR-T) cell therapy, a high incidence of relapse has been observed. To further increase treatment efficacy and reduce the rate of escape of Ag-negative cells, we need to develop CAR-T cells that target other Ags. Given its restricted expression pattern, CD37 was considered a preferred novel target for immunotherapy in hematopoietic malignancies. Therefore, we designed a CD37-targeting CAR-T (CD37CAR-T) using the single-chain variable fragment of a humanized anti-CD37 Ab, transmembrane and intracellular domains of CD28, and CD3ζ signaling domains. High levels of CD37 expression were confirmed in B cells from human peripheral blood and bone marrow B cell precursors at late developmental stages; by contrast, more limited expression of CD37 was observed in early precursor B cells. Furthermore, we found that human CD37CAR-T cells with longer spacer lengths exhibited high gene transduction efficacy but reduced capacity to proliferate; this may be due to overactivation and fratricide. Spacer length optimization resulted in a modest transduction efficiency together with robust capacity to proliferate. CD37CAR-T cells with optimized spacer length efficiently targeted various CD37 + human tumor cell lines but had no impact on normal leukocytes both in vitro and in vivo. CD37CAR-T cells effectively eradicated Raji cells in xenograft model. Collectively, these results suggested that spacer-optimized CD37CAR-T cells could target CD37-high neoplastic B cells both in vitro and in vivo, with only limited interactions with their normal leukocyte lineages, thereby providing an additional promising therapeutic intervention for patients with B cell malignancies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom