Foxp3+ Regulatory T Cell Depletion after Nonablative Oligofractionated Irradiation Boosts the Abscopal Effects in Murine Malignant Mesothelioma
Author(s) -
Mikihiro Kohno,
Junichi Murakami,
Licun Wu,
M.K. Chan,
Zhihong Yun,
John Cho,
Marc de Perrot
Publication year - 2020
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.2000487
Subject(s) - abscopal effect , foxp3 , cancer research , cd8 , granzyme b , cytotoxic t cell , immune system , immunology , medicine , immunotherapy , granzyme , tumor microenvironment , immune checkpoint , biology , perforin , biochemistry , in vitro
Increasing evidence indicates that local hypofractionated radiotherapy (LRT) can elicit both immunogenic and immunosuppressive local and systemic immune responses. We thus hypothesized that blockade of LRT-induced immunosuppressive responses could augment the antitumor effects and induce an abscopal response. In this study, we found that the upregulation of Foxp3 + regulatory T cells (Tregs) in the mesothelioma tumor microenvironment after nonablative oligofractionated irradiation significantly limited the success of irradiation. Using DEREG mice, which allow conditional and efficient depletion of Foxp3 + Tregs by diphtheria toxin injection, we observed that transient Foxp3 + Treg depletion immediately after nonablative oligofractionated irradiation provided synergistic local control and biased the T cell repertoire toward central and effector memory T cells, resulting in long-term cure. Furthermore, this combination therapy showed significant abscopal effect on the nonirradiated tumors in a concomitant model of mesothelioma through systemic activation of cytotoxic T cells and enhanced production of IFN-γ and granzyme B. Although local control was preserved with one fraction of nonablative irradiation, three fractions were required to generate the abscopal effect. PD-1 and CTLA-4 were upregulated on tumor-infiltrating CD4 + and CD8 + T cells in irradiated and nonirradiated tumors, suggesting that immune checkpoint inhibitors could be beneficial after LRT and Foxp3 + Treg depletion. Our findings are applicable to the strategy of immuno-radiotherapy for generating optimal antitumor immune responses in the clinical setting. Targeting Tregs immediately after a short course of irradiation could have a major impact on the local response to irradiation and its abscopal effect.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom