z-logo
open-access-imgOpen Access
Cutting Edge: Polymicrobial Sepsis Has the Capacity to Reinvigorate Tumor-Infiltrating CD8 T Cells and Prolong Host Survival
Author(s) -
Derek B. Danahy,
Isaac J. Jensen,
Thomas S. Griffith,
Vladimir P. Badovinac
Publication year - 2019
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1900076
Subject(s) - sepsis , medicine , cd8 , malignancy , tumor necrosis factor alpha , immunology , cancer , immunotherapy , tumor infiltrating lymphocytes , cancer research , immune system
Malignancy increases sepsis incidence 10-fold and elevates sepsis-associated mortality. Advances in treatment have improved survival of cancer patients shortly after sepsis, but there is a paucity of information on how sepsis impacts cancer growth, development, and prognosis. To test this, cecal ligation and puncture surgery was performed on B16 melanoma-bearing mice to show that sepsis has detrimental effects in hosts with advanced tumors, leading to increased mortality. Surprisingly, mice experiencing cecal ligation and puncture-induced sepsis earlier during tumor development exhibited CD8 T cell-dependent attenuation of tumor growth. Sepsis-resistant CD8 tumor-infiltrating T cells showed increased in vivo activation, effector IFN-γ cytokine production, proliferation, and expression of activation/inhibitory PD-1/LAG-3 receptors because of a sepsis-induced liberation of tumor Ags. Sepsis-reinvigorated CD8 tumor-infiltrating T cells were also amenable to (anti-PD-L1/LAG-3) checkpoint blockade therapy, further prolonging cancer-associated survival in sepsis survivors. Thus, sepsis has the capacity to improve tumor-specific CD8 T cell responses, leading to better cancer prognosis and increased survival.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom