Ancestral T Cells in Fish Require mTORC1-Coupled Immune Signals and Metabolic Programming for Proper Activation and Function
Author(s) -
Xiumei Wei,
Kete Ai,
Huiying Li,
Yu Zhang,
Kang Li,
Jialong Yang
Publication year - 2019
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.1900008
Subject(s) - mtorc1 , fish <actinopterygii> , immune system , function (biology) , biology , computational biology , computer science , evolutionary biology , microbiology and biotechnology , fishery , genetics , signal transduction , pi3k/akt/mtor pathway
T cells suddenly appeared in jawed fish ∼450 million years ago. Biological studies of fish T cells may provide helpful evidence to understand evolution of adaptive immune systems. To this end, using a Nile tilapia ( Oreochromis niloticus ) model, we revealed the regulatory mechanism of adaptive immunity mediated by ancestral T cells in jawed fish. Nile tilapia T cells as well as a tightly regulated mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway participate in the cellular adaptive immune response during Streptococcus agalactiae infection. Blockade of mTORC1 signaling by rapamycin impairs T cell activation and Ag-induced proliferation in this early vertebrate. More critically, we show that signals from mTORC1 are indispensable for primordial effector T cells to eliminate infection by promoting the expression of proinflammatory cytokines, cytotoxic-related molecules, and proapoptotic genes. Mechanistically, teleost mTORC1 directs effector T cell function by coordinating multiple metabolic programs, including glycolysis, glutaminolysis, and lipogenesis through activating key transcription factors c-Myc, HIF-1α, and sterol regulatory element-binding proteins, and thus links immune signals to metabolic reprogramming in jawed fish. To our knowledge, these results represent the first description of the regulatory mechanism for T cell-mediated adaptive immunity in a fish species. From an evolutionary viewpoint, our study suggests that primordial T cells are armed with sophisticated regulatory strategies like those in modern T cells prior to the divergence of bony fish from the tetrapod lineage. Therefore, our findings fill in an important gap regarding evolution of the adaptive immune system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom