The Inositol 5′-Phosphatase SHIP-2 Negatively Regulates IgE-Induced Mast Cell Degranulation and Cytokine Production
Author(s) -
WaiHang Leung,
Silvia Bolland
Publication year - 2007
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.179.1.95
Subject(s) - degranulation , microbiology and biotechnology , lyn , cytokine , mast cell , immunoglobulin e , chemistry , phosphorylation , stem cell factor , receptor , biology , proto oncogene tyrosine protein kinase src , haematopoiesis , immunology , biochemistry , antibody , stem cell
Aggregation of the high-affinity IgE receptor (FcepsilonRI) on mast cells initiates signaling pathways leading to degranulation and cytokine release. It has been reported that SHIP-1 negatively regulates FcepsilonRI-triggered pathways but it is unknown whether its homologous protein SHIP-2 has the same function. We have used a lentiviral-based RNA interference technique to obtain SHIP-2 knockdown bone marrow-derived mast cells (BMMCs) and have found that elimination of SHIP-2 results in both increased mast cell degranulation and cytokine (IL-4 and IL-13) gene expression upon FcepsilonRI stimulation. Elimination of SHIP-2 from BMMCs has no effect on FcepsilonRI-triggered calcium flux, tyrosine phosphorylation of MAPKs or in actin depolymerization following activation. Rather, we observe that absence of SHIP-2 results in increased activation of the small GTPase Rac-1 and in enhanced microtubule polymerization upon FcepsilonRI engagement. Coimmunoprecipitation experiments in rat basophilic leukemia (RBL 2H3) cells show that SHIP-2 interacts with the FcepsilonRI beta-chain, Gab2 and Lyn and that unlike SHIP-1, it does not associate with SHC in mast cells. Our results report a negative regulatory role of SHIP-2 on mast cell activation that is calcium independent and distinct from the regulation by SHIP-1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom