Suppression of Disease in New Zealand Black/New Zealand White Lupus-Prone Mice by Adoptive Transfer of Ex Vivo Expanded Regulatory T Cells
Author(s) -
Kenneth J. Scalapino,
Qizhi Tang,
Jeffrey A. Bluestone,
Mark Bonyhadi,
David Daikh
Publication year - 2006
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.177.3.1451
Subject(s) - adoptive cell transfer , immunology , ex vivo , systemic lupus erythematosus , il 2 receptor , spleen , biology , autoimmunity , foxp3 , lymph , in vivo , disease , medicine , t cell , antibody , immune system , pathology , microbiology and biotechnology
An increasing number of studies indicate that a subset of CD4(+) T cells with regulatory capacity (regulatory T cells; T(regs)) can function to control organ-specific autoimmune disease. To determine whether abnormalities of thymic-derived T(regs) play a role in systemic lupus erythematosus, we evaluated T(reg) prevalence and function in (New Zealand Black x New Zealand White)F(1) (B/W) lupus-prone mice. To explore the potential of T(regs) to suppress disease, we evaluated the effect of adoptive transfer of purified, ex vivo expanded thymic-derived T(regs) on the progression of renal disease. We found that although the prevalence of T(regs) is reduced in regional lymph nodes and spleen of prediseased B/W mice compared with age-matched non-autoimmune mice, these cells increase in number in older diseased mice. In addition, the ability of these cells to proliferate in vitro was comparable to those purified from non-autoimmune control animals. Purified CD4(+)CD25(+)CD62L(high) B/W T(regs) were expanded ex vivo 80-fold, resulting in cells with a stable suppressor phenotype. Adoptive transfer of these exogenously expanded cells reduced the rate at which mice developed renal disease; a second transfer after treated animals had developed proteinuria further slowed the progression of renal disease and significantly improved survival. These studies indicate that thymic-derived T(regs) may have a significant role in the control of autoimmunity in lupus-prone B/W mice, and augmentation of these cells may constitute a novel therapeutic approach for systemic lupus erythematosus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom